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Abstract
Computer-aided image analysis for better understanding of images has been time-honored approaches in the medical com-
puting field. In the conventional machine learning approach, the domain experts in medical images are mandatory for image 
annotation that subsequently to be used for feature engineering. However, in deep learning, a big jump has been made to help 
the researchers do segmentation, feature extraction, classification, and detection from raw medical images obtained using 
digital breast tomosynthesis, digital mammography, magnetic resonance imaging, and ultrasound imaging modalities. As a 
result, deep learning (DL) has gained a state-of-the-art in many application areas, for example, breast cancer image analysis. 
In this survey paper, we reviewed the most common breast cancer imaging modalities, public, most cited and recently updated 
breast cancer databases, histopathological based breast cancer image analysis, and DL application types in medical image 
analysis. We finally conclude by pointing out the research gaps to be addressed in the future.

Keywords Breast cancer · Breast cancer databases · Imaging modalities · Medical image analysis · Deep learning 
application

1 Introduction

Breast cancer is the most prevalent type of cancer in women 
next to lung cancer and early detection has significantly 
increased the survival rate as proven by clinical reports 
(Zhang et al. 2018; Kim et al. 2016; Yousefi et al. 2018; 
Shin et al. 2017). There are a number of breast cancer imag-
ing modalities from old (screen-film mammography) to 
recent (digital breast tomosynthesis) that have been used by 

radiologists to screen breast cancer. These imagining modal-
ities have shown remarkable success in detecting breast can-
cer abnormalities that include masses, microcalcifications, 
architectural distortions, and bilateral asymmetry. However, 
they suffer from issues like breast tissue overlapping that 
hides breast information and which lets suspicious lesions 
out of sight (Yousefi et al. 2018).

Breast cancer abnormality can be categorized into in-
situ and invasive ductal carcinoma (IDC). In-situ represents 
approximately 20–30% of all new breast cancer diagnoses 
(Brennan et al. 2011; Zhu et al. 2018) whereas IDC is the 
most common type of breast cancer which almost accounts 
for 80% . For example, in-situ has started to be treated using 
active surveillance without undergoing surgical treatment 
(Grimm et al. 2017; Zhu et al. 2018) which is not true for 
IDC. Therefore, early differentiation of breast cancer type 
as in-situ and invasive is very important for patients so as 
to define treatment strategy (Grimm et al. 2017; Zhu et al. 
2018). For a better understanding of the readers, we identi-
fied medical terms used in this survey paper and presented 
their definition in Table 1.

In Sect. 2 of this survey paper, we discuss the methodol-
ogy adopted to search papers from selected search databases. 
In Sects. 3 and 4, we reviewed most common breast cancer 
imaging modalities and breast cancer databases that are most 
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cited in articles, respectively. In Sect. 5, we reviewed the 
application areas of deep learning (DL) in medical image 
analysis in general and breast cancer image analysis in par-
ticular. Finally, we made the conclusion of the survey paper 
in Sect. 6 with highlighting the research gaps for further 
improvement.

2  Methods

We reviewed articles from 2004 to 2018 to (1) evaluate 
the use of imaging modalities, (2) compare breast can-
cer imaging modalities, (3) point out the most cited and 
publicly available breast cancer databases with different 
formats and modalities, (4) evaluate the use of DL applica-
tion in medical image analysis specifically to breast cancer 
image analysis, (5) evaluate the application of DL using 
histopathological based breast cancer image analysis. 
Our general search criteria for this survey paper consisted 
keywords like ‘breast imaging technology’, ‘deep learning 
and medical image analysis’, ‘application of deep learn-
ing in medical image analysis’, and ‘application of deep 
learning to breast cancer’. However, we specifically used 

different search criteria for some of the search databases. 
The searches were carried out from eight databases: (1) 
Web of Science, (2) PubMed, (3) Science Direct, (4) IEEE 
Xplore Digital Library, (5) Google Scholar, (6) arxiv, (7) 
MICCAI, and (8) SPIE. PubMed was searched for papers 
containing “convolutional neural network” OR “deep 
learning” OR “medical imaging” OR “histology”. Arxiv 
was searched using search terminologies related to medi-
cal imaging with search string ’abs:((medical OR mri OR 
“magnetic resonance” OR(medical OR “histology” OR 
“ultrasound” OR sfm OR “screen-film mammography” 
OR “digital mammography” OR “breast cancer”) AND 
(“deep learning” OR “deep learning application” OR con-
volutional OR cnn OR “neural network”))’. IEEE Xplore 
Digital Library is searched for paper containing “convolu-
tional neural network” OR “deep learning” OR “medical 
imaging”. Conference proceedings for MICCAI and SPIE 
were searched based on search terminologies that include: 
DL in breast cancer and MRI, DL in breast cancer and US, 
DL in breast cancer and DBT, DL in breast cancer and 
DM OR GM, DL in breast cancer and histology, DL and 
medical image analysis and application of deep learning 
in medical image analysis.

Table 1  Medical terms and their definition

Medical terms Definition Citation

Cancer Uncontrolled growth of cell in the body Debelee et al. (2018)
Breast Cancer Cancer that occur particularly in breast Debelee et al. (2018)
BRCA1 and BRCA2 Tumor suppressor proteins found in human genes are 

encoded as BRCA1 and BRCA2. These proteins play 
a role in stabilizing the genetic material of each cell by 
repairing the damaged DNA. However, when either of 
these genes is altered, proper repair of DNA may not be 
in place which results in additional genetic alterations 
that lead to cancer

National Cancer Institute (2018)

Benign Breast cancer that doesn’t spread to other body part from 
point of its origin

Debelee et al. (2018)

Malignant Breast cancer that spread to other body part from point 
of its origin

Debelee et al. (2018)

In-situ Cancer where normal cells of the breast glands are 
replaced by abnormal cells which may expand the 
lobules and ducts of the breast

American Cancer Society (2015)

Invasive ductal carcinoma A cancer type that spread into the nearby breast tissue by 
breaking the ducts or glands from where they origi-
nated

American Cancer Society (2015)

Mass The localized swelling, protuberance and lump in the 
breast

Debelee et al. (2018), Sampat (2005) and Oliver Mal-
agelada (2007)

Micro-calcification Tiny spot of calcium deposit that ranges from 50 to 100 
μ m in diameter and appear in clusters

Debelee et al. (2018), Sampat (2005) and Oliver Mal-
agelada (2007)

Architectural Distortion The disruption of normal arrangement of the breast tissue 
that result in disorganized pattern

Debelee et al. (2018), Sampat (2005) and Oliver Mal-
agelada (2007)

Bilateral Asymmetry Both breasts(left and right) are expected to have similar 
tissue pattern distribution. If this similarity failed to 
exist, asymmetry between breasts occur

Debelee et al. (2018), Sampat (2005) and Oliver Mal-
agelada (2007)
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3  Breast cancer imaging modalities

In breast cancer image analysis, breast abnormality detection 
starts with imaging modalities for screening (Zhang et al. 
2018). When an abnormality is found early, it is easy to treat 
the patients, but if evidence appears, cancer may start to 
spread and by then might be difficult to treat. Among several, 
some selected breast cancer screening methods are discussed 
here (Ethiopian Cancer Association 2016). There are differ-
ent imaging technologies used for breast cancer screening. 
The performance of breast cancer imaging modalities can 
be evaluated mostly by sensitivity, specificity, recall rates, 
positive predicted value (PPV), AUC, F-score, and accuracy.

3.1  Screen‑film mammography (SFM)

Screen-film mammography has been the standard imaging 
modality (still in use in some countries including Ethio-
pia) for detecting suspicious lesions at an early stage. In 
the past five decades, the SFM became a useful medium 
in breast screening. SFM has a high sensitivity (100% ) in 
detecting suspicious lesions in breasts composed primar-
ily of fatty tissue (Duijm et al. 1997). However, decreases 
significantly for breasts with dense glandular tissue. Conse-
quently, 10–20% of breast cancers are not visualized (Burrell 
et al. 1996). Besides, the decrease in lesion conspicuousness 
may be due to the film itself since it serves as the medium 
of image acquisition, display, and storage. Once the film 
is produced, then further improvement is not possible and 
part of the image may be displayed with lesser contrast. If 
image improvements cannot be carried out for images with 
lesser contrast, then patients need to undergo another mam-
mographic image and consequently be exposed to more 
radiation dose. Other drawbacks of the film are that differ-
ent regions of the breast image are represented according 
to the characteristic response of the mammographic film. 
There is a trade-off between the dynamic range (latitude) 
and contrast resolution (gradient) (Helvie 2010). Another 
significant problem of SFM is that it is not digital.

3.2  Digital mammography (DM)

Early-stage breast cancer screening using digital mam-
mography is an effective imaging modality (Gilbert et al. 
2015; Liu et al. 2018). It has been the most effective and 
standard breast imaging modality in the detection and diag-
nosis of abnormalities of the female breast (Jalalian et al. 
2013). However, it has some limitations which include low 
specificity. As a consequence there may be a higher number 
of unnecessary biopsies and this limitation increases costs 
and stress on the patients (Gilbert et al. 2015; Jalalian et al. 

2013). Besides, low specificity and high cost the digital 
mammography exposes the patients to ionizing radiation 
which endangers the patient’s health (Jalalian et al. 2013). 
In cases where there is overlapping of breast tissue, then 
there is a high possibility to leave out some cancers in the 
retro-mammary space as a result of insufficient position-
ing of deep tissue (Gilbert et al. 2015; Kevin et al. 2010). 
Digital mammography offers several advantages over SFM 
(Patterson and Roubidoux 2014). Besides, computer-assisted 
detection (CAD) system has revealed favorable results in 
mammography and is used in the clinical routine to improve 
the radiologist’s sensitivity (Becker et al. 2018). However, it 
has also three limitations: high false positive results which 
imply higher recall rates, higher false negative results, and 
high radiation exposure (Liu et al. 2018).

3.3  Ultrasound (US)

Ultrasound is an imaging modality that has been used for 
breast lesion detection and differentiation even though it is 
operator dependent. Breast lesion detection and differentia-
tion is only possible with the help of an operator who can 
properly locate the lesion using ultrasound scanner (Byra 
et al. 2018). However, in contrast to mammography ultra-
sound doesn’t require the use of ionizing radiation (Becker 
et al. 2018). According to a review made in Sudarshan et al. 
(2016) and Jalalian et al. (2013), ultrasound imaging modal-
ity is used for detection and diagnose of abnormalities in 
breast cancer as the second choice to DM. In Jalalian et al. 
(2013), it is indicated that ultrasound achieved high accu-
racy in detecting and discriminating benign and malignant 
masses and supported by Shin et al. (2017). This enabled 
US imaging modality to bring down unneeded biopsies. 
According to Byra et al. (2018) and Shin et al. (2017) US is 
found to be safe, accurate, low cost and highly universalize 
compared to magnetic resonance imaging, DM, and digital 
breast tomosynthesis imaging modalities. For every specific 
lesion types, deep knowledge of image features are required 
to interpret and this makes the Ultrasound image interpre-
tation not to be straightforward. Ultrasound showed high 
sensitivity for identifying abnormalities in dense breasts and 
for women younger than 35 years of age (Sudarshan et al. 
2016; Becker et al. 2018). Ultrasound is well recommended 
to be used as a supplement to DM because of its availabil-
ity, inexpensiveness compared to other modalities and well-
tolerated by patients (Kevin et al. 2010; Leach et al. 2005; 
Becker et al. 2018).

3.4  Magnetic resonance imaging (MRI)

MRI imaging is based on radio frequency absorption of 
nuclei in the existence of potent magnetic fields. It is used 
in case of presence of high patient risk and for clinical 
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diagnosis and monitoring of breast cancer (Amit et  al. 
2017; Antropova and Giger 2018; Morrow et al. 2011; Kuhl 
et al. 2014; Saslow et al. 2007; Lin and Brown 2007). In 
previous studies MRI was used for breast segmentation 
(Gubern-Mèrida et al. 2015; Wu et al. 2013), breast abnor-
mality detection (Chang et al. 2014; Renz et al. 2012), and 
breast abnormality classification (Gallego-Ortiz and Martel 
2015; Agliozzo et al. 2012; Agner et al. 2011; Pang et al. 
2015) using computer aided detection/diagnosis (CAD) 
system. The technologically enhanced form of MRI, DCE-
MRI (dynamic contrast-enhanced MRI), has provided 
higher volumetric resolution for better lesion visualization 
and lesions temporal pattern enhancement to extract valu-
able information for better cancer management (Antropova 
and Giger 2018; Turkbey 2009). Studies have shown that 
DCE-MRI provides a useful tool for breast cancer diagno-
sis (Mahrooghy et al. 2015; Zhang et al. 2018), prognosis 
(Mazurowski et al. 2015a; Zhang et al. 2018), and correla-
tion with genomics (Mazurowski 2015b; Zhang et al. 2018). 
In comparison with other imaging modalities like mammog-
raphy and ultrasound, MRI has shown high sensitivity to 
breast cancer diagnosis (Antropova and Giger 2018; Zhang 
et al. 2018; Lin and Brown 2007). CE-MRI is an improved 
MRI technology and it has shown to have high sensitivity for 
cancer detection, even in dense breasts (Leach et al. 2005). 
Even though recommended for women with high-risk breast 
cancer, MRI might not be optimal imaging modality because 
of its higher cost and lower specificity (Griebsh et al. 2006; 
Kuhl et al. 2007).

3.5  Digital breast tomosynthesis (DBT)

Digital Breast Tomosynthesis is an imaging modality that 
produces a 3D image of the breast using low dose X-rays 
received at different angles (Regina et  al. 2017; Helvie 
2010). It is a new breast cancer imaging modality in which 
the breast is placed and compressed in the same way as a 
mammogram but the tube with the X-ray moves in a cir-
cular arc around the breast (Gur et al. 2009; Gennaro et al. 
2010; Wallis et al. 2012; Andersson et al. 2008; Zhang et al. 
2018; Poplack et al. 2007). It takes less time for the imaging 
(Fotin et al. 2016) and provides better detail of dense tis-
sue in the breast compared to conventional mammography 
(Zhang et al. 2018; Poplack et al. 2007). 3D breast images 
are produced using computer based on information received 
from X-rays. The X-ray dose for a tomosynthesis image is 
similar to that of a regular mammogram (American College 
of Radiology Imaging Network 2017). After digital mam-
mography, DBT has appeared to be a favorable breast cancer 
imaging modality to enhance the sensitivity and accuracy 
of screening (Gur et al. 2009; Gennaro et al. 2010; Wallis 
et al. 2012; Andersson et al. 2008; Poplack et al. 2007). 
DBT has emerged as a new breast cancer imaging modalities 

with a lot of benefits. However, DBT was not able to detect 
malignant micro-calcifications if those calcification were not 
on the DBT slice plane (Regina et al. 2017) and increases 
recall rates for architectural distortion type of breast cancer 
abnormality (Lourenco et al. 2015). It has also substantially 
increased the reading time compared to a digital mammo-
gram (DM) in terms of mammogram reading (Samala et al. 
2016b) (Table 2).

3.6  Combination of breast cancer imaging 
modalities

The radiologists and researchers started to use combined 
imaging modalities during screening to enhance the rate 
of early detection. In this survey paper we included a few 
papers and presented as follows:

Gilbert et al. (2015), evaluated the performance of three 
breast imaging modalities (DM, DBT and synthetic DM) 
and their combinations (DM + DBT and synthetic DM + 
DBT). The comparison was made using datasets containing 
7060 cases collected randomly from 8869 women of age 
between 29 and 85. Then, independent radiologists, blind 
reviewers are considered to review images in DM + DBT, 
DM, and synthetic DM + DBT without access to the pre-
vious examination results. The blind review was made in 
terms of specificity and sensitivity. The sensitivity for DM, 
DM + DBT, and synthetic DM + DBT were 87% , 89% and 
88% , respectively. The blind review assured that for the age 
ranging from 50 to 59, the sensitivity of patients became 
significantly higher (p = 0.01) for DM + DBT than for DM. 
In the study the patients with dense breast were included 
and for those patients that had breast density of 50% and 
higher, the sensitivity was 93% for DM + DBT and 86% for 
DM with a p-value of 0.03. The specificity for DM, DM + 
DBT, and synthetic DM + DBT were 57% , 70% and 72% , 
respectively. Finally the study in Gilbert et al. (2015) has 
proved that adding DBT to DM increased the sensitivity 
value for patients with dense breasts and increased specific-
ity for all age groups. More importantly, DBT has shown 
that it has potential benefits especially for dense breasts in 
younger women.

Mariscotti et al. (2014) compared the efficiency of four 
imaging modalities (DM, DBT, US, MRI) using 200 patients 
with age ranging from 26 to 79 and who undergo the screen-
ing. Their target was to compare the DM and MRI to DBT 
alone and a combination of imaging modalities. That means, 
comparing DM with DBT and MRI with DM + DBT + US. 
Parameters used for evaluation were sensitivity, specificity, 
and overall accuracy. DBT scored higher sensitivity than 
DM alone. The sensitivity of DBT and DM are 90.7% and 
85.2% , respectively. The three combined imaging modali-
ties (DM + DBT + the US) achieved a sensitivity value 
of 97.7% . The sensitivity of MRI alone is 98.8% . However, 
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Table 2  Advantages and disadvantages of breast cancer imaging modalities

Imaging 
Modalities

Advantages and disadvantages Citation

SFM Advantages
Standard modality for detecting lesions at early stageN Duijm et al. (1997), Skaane (2009) and Faridah (2008)
Has high sensitivity in detecting breast with fatty tissue Duijm et al. (1997), Skaane (2009) and Faridah (2008)
Disadvantages
Has low sensitivity in detecting dense breast tissue Burrell et al. (1996), Skaane (2009) and Faridah (2008)
There is trade-off between dynamic range and contrast resolution Helvie (2010), Skaane (2009) and Faridah (2008)
Images will not further improved after film is exposed and pro-

cessed
Helvie (2010), Skaane (2009) and Faridah (2008)

In densed breast tissue, 10–20% tissue breast cancers are not 
visualized

Burrell et al. (1996), Skaane (2009) and Faridah (2008)

Not digital imaging modality Helvie (2010), Skaane (2009) and Faridah (2008)
DM Advantages

Effective imaging modality for early detection Gilbert et al. (2015) and Liu et al. (2018)
Image improvement for better contrast is possible Patterson and Roubidoux (2014) and Faridah (2008)
Improves radiologist’s sensitivity compared to SFM Patterson and Roubidoux (2014) and Faridah (2008)
Disadvantages
Has low specificity which results in unnecessary biopsies Jalalian et al. (2013)
High imaging cost relative to SFM Jalalian et al. (2013)
High radiation exposure Jalalian et al. (2013) and Liu et al. (2018)
High probability to miss cancer for overlapping breast tissue Gilbert et al. (2015) and Kevin et al. (2010)
High false positive results which end up with higher recall rates Liu et al. (2018)
Higher false negative results Liu et al. (2018)

US Advantages
Recommended to be used as an alternative to DM Sudarshan et al. (2016), Jalalian et al. (2013) and Kevin et al. 

(2010), Leach et al. (2005) and Becker et al. (2018)
Achieved high accuracy in detecting and classifying benign and 

malignant
Shin et al. (2017)

Safe, accurate, low cost and universalized compared to DM, MRI 
and DBT

Byra et al. (2018) and Shin et al. (2017)

Has high sensitivity to identify abnormalities in dense breasts Sudarshan et al. (2016) and Becker et al. (2018)
Doesn’t require usage of ionized radiation Becker et al. (2018)
Disadvantages
Breast lesions detection is possible only with the help of operator Byra et al. (2018)
Ultrasound image interpretation is not straightforward Byra et al. (2018) and Shin et al. (2017)

MRI Advantages
Used for high risk patients Amit et al. (2017), Antropova and Giger (2018), Morrow 

et al. (2011), Kuhl et al. (2014), Saslow et al. (2007) and 
Lin and Brown (2007)

Used for clinical diagnosis and monitoring of breast cancer Amit et al. (2017), Antropova and Giger (2018), Morrow 
et al. (2011), Kuhl et al. (2014), Saslow et al. (2007) and 
Lin and Brown (2007)

Has high sensitivity for breast cancer diagnosis compared to US 
and DM

Antropova and Giger (2018), Zhang et al. (2018) and Lin 
and Brown (2007)

Disadvantages
It has low specificity Griebsh et al. (2006) and Kuhl et al. (2007).
It is expensive compared to US and DM Griebsh et al. (2006) and Kuhl et al. (2007)
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combining it with the other three imaging modalities (DM + 
DBT + the US) didn’t show improvement to overall sensitiv-
ity. The overall accuracy of MRI and DM + DBT + the US 
were 93.3% and 93.7% , respectively. Breast density affects 
the sensitivity of some imaging modalities, for example, it 
affects DM and DBT but not MRI.

Kuhl et al involved 529 participants for screening with 
43 different cases where 34 invasive and 9 were ductal car-
cinoma in-situ type of cancers Kuhl et al. (2005). In their 
study three imaging modalities (DM, US, and MRI) were 
considered for comparison and they found out that the sen-
sitivity of MRI, 91% , is significantly higher than that of DM 
(33% ), US (40% ) and DM + US (49% ). However, DM and 
MRI have scored almost the same specificity value, 97.2% 
for MRI and 96.8% mammography.

Leach et al. (2005) performed a comparative analysis 
between DM and contrast-enhanced magnetic resonance 
imaging (CE MRI) in terms of sensitivity and specificity. 
The study involved 649 women patients between 35 and 
49 with breast cancer history from family (BRCA1 and 
BRCA2). The specificity and sensitivity were computed 
after annual screening for 2–7 years and CE-MRI, DM, and 
CE-MRI + DM scored a sensitivity of 77% , 40% and 94% , 
respectively. The imaging modalities like CE-MRI, DM, and 

CE-MRI + DM scored the specificity of 81% , 93% and 77% , 
respectively.

Warner et al. (2004) in their study targeted to compare 
three breast cancer imaging modalities (DM, US, and MRI) 
and breast examination in the clinic (CBE) in terms of sen-
sitivity and specificity. The patients they considered were 
patients related to BRCA1 or BRCA2 mutation. The study, 
CBE, recommended every 6 months to carry out breast 
screening from age 25 onward for those with mutation 
(BRCA1 or BRCA2). In their study, they confirmed that 
the sensitivity of MRI is more for detecting breast cancers 
compared to DM, US, or CBE. The specificity and sensitiv-
ity scored were 77% and 95.4% for MRI, 36% and 99.8% 
for DM, 33% and 96% for the US, and 9.1% and 99.3% for 
CBE, respectively (Warner et al. 2004). Additionally, they 
did screening using MRI + DM + the US + CBE to compare 
with DM + CBE and achieved a sensitivity of 95% and 45% , 
respectively.

Patient screening for breast cancer using MRI + DM 
scored higher sensitivity than DM alone in all age ranges 
(Phi et al. 2017). For example, the sensitivity of DM + 
MRI achieved 95% and 51% for DM and 50% for MRI 
alone. For women aged between 40 and 49, the research-
ers found that the sensitivity of MRI + DM was 98% and 

Table 2  (continued)

Imaging 
Modalities

Advantages and disadvantages Citation

DBT Advantages

Improves the effect of overlapping breast tissue using reconstructed 
volume

Lang et al. (2016), Helvie (2010), Kim et al. (2016) and 
Baker and Lo (2011)

Significantly decreases screening recall and decreased women 
compliance

Durand et al. (2015), Lourenco et al. (2015), McDonald et al. 
(2015) and Sumkin et al. (2015)

Reduces number of false positive and false negative Lourenco et al. (2015), McCarthy et al. (2014), Ciatto et al. 
(2013), Haas et al. (2013), Conant et al. (2016), Rafferty 
et al. (2016) and Liu et al. (2018)

Detects more invasive cancers, malignant and benign lesions 
compared to 2D DM

Regina et al. (2017)

Achieves high-resolution images with limited angle tomography Yousefi et al. (2018)

Produces multiple 3D images with single screening Yousefi et al. (2018)

Improves accuracy, sensitivity and specificity compared to DM Kopans (2014), Michell et al. (2012), Skaane et al. (2013) 
and Rafferty et al. (2013)

Benign visibility is superior in DBT than DM Freer et al. (2014) and Mall et al. (2017)

Disadvantages

X-ray dose for tomosynthesis image is similar to DM American College of Radiology Imaging Network (2017), 
Jalalian et al. (2013) and Liu et al. (2018)

It is very expensive compared to SFM, US,DM and MRI Mall et al. (2017)

Calcification detection using DBT is questionable Brandt et al. (2013), Rafferty (2007) and Mall et al. (2017)

Benign visibility higher but mimic malignant mass-like appearance Freer et al. (2014) and Mall et al. (2017)
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that of DM and MRI alone were 57% and 47% , respec-
tively. The sensitivity of DM enhanced to some level with 
increasing age but low in women less than the age of 40.

Phi et al. (2016), evaluated the performance of two 
breast imaging modalities (DM and MRI) and their com-
bination (DM + MRI) for two mutation status indicators, 
BRCA1 and BRCA2. The study divided the patients into 
four age groups (all ages, ≤ 40, ages between 41 and 50 
years, and above 50) to do age based performance analy-
sis using specificity and sensitivity for the two imaging 
modalities. For all age groups and BRCA1 mutation status, 
the sensitivity and specificity were 35.7% and 93.8% for 
DM, 88.6% and 84.4% for MRI and 92.5% and 80.4% for 
DM + MRI, respectively. For all age groups and BRCA2 
mutation status, the specificity and sensitivity were 44.6% 
and 93.4% for DM, 80.1% and 85.3% for MRI and 92.7% 
and 80.5% for DM + MRI, respectively. The sensitiv-
ity and specificity for other age groups and BRCA1 and 
BRCA2 were also presented in Phi et al. (2016) (Table 3).

4  Breast cancer image databases

Over the last few decades, a lot of databases/datasets was 
produced and published in a different repository where some 
of them were publicly available for use. Most datasets exist 

in two formats [CSV and image (jpg, pgm,png, DICOM and 
jpeg)]. Breast cancer image analysis has mainly used these 
databases. For example, Mammography Image Analysis 
Society(MIAS) database is the most popular and applicable 
by many researchers. It contains 322 image samples where 
208 are normal and 114 are abnormal (63 benign cases and 
51 malignant cases). The other popular database is Digital 
Database for Screening Mammography (DDSM) with 2500 
images. The summary of most cited and recently updated 
breast cancer databases are presented in Table 4.

5  Deep learning and breast cancer image 
analysis

In this section we present breast cancer image analysis in 
two perspectives: in Sect. 5.1, we present breast cancer 
image analysis by deep convolutional neural network with 
datasets developed using various breast cancer imaging 
modalities; and in Sect. 5.2, we reviewed the histopathol-
ogy based breast cancer analysis using deep convolutional 
neural network.

5.1  Imaging modalities and deep learning based 
breast cancer image analysis

Over the last decades, we have witnessed the importance 
of medical imaging, e.g., screen-film mammography, 
computed tomography (CT), magnetic resonance imag-
ing (MRI), positron emission tomography (PET), digital 
mammography, ultrasound, and so on, for the early detec-
tion, diagnosis, and treatment of diseases (Antropova and 
Giger 2018). In the clinic, the medical image interpreta-
tion has mostly been performed by human experts such as 
radiologists and physicians. However, due to large varia-
tions in pathology and potential fatigue of human experts, 
researchers and doctors have recently begun to benefit 
from computer-assisted interventions. As compared to the 
advances in medical imaging technologies, it is belated for 
the advances in computational medical image analysis and 
recently it has been improving with the help of machine 
learning techniques. The most common application areas 
of DL in medical health care include: breast cancer image 
analysis (Rodriguez-Ruiz et al. 2018; Kooi et al. 2017a; 
Wang et al. 2017; Debelee et al. 2018), brain image analy-
sis (Shen et al. 2017; Hosseini-Asl et al. 2016; Burgh et al. 
2017; Ghafoorian et al. 2017), retinal image analysis (Wu 
et al. 2016; Zilly et al. 2017), chest X-ray image analysis 
(Rajkomar et al. 2017; Kim and Hwang 2016; Anavi et al. 
2015, 2016; Bar et al. 2015, 2016; Hwang et al. 2016; Shin 
et al. 2016a; Wang et al. 2016a), abdominal image analysis 
(Shah et al. 2016; Zhu et al. 2017) and musculoskeletal 

Table 3  Summary of performance of imaging modalities in terms of 
sensitivity and specificity

Imaging Modality Sensitivity Specificity Author(s) and citation

DM 87 57 Gilbert et al. (2015)
DM + DBT 89 70 Gilbert et al. (2015)
DM 85.2 – Mariscotti et al. (2014)
DBT 90.7 – Mariscotti et al. (2014)
DM+DBT+US 97.7 – Mariscotti et al. (2014)
MRI 98.8 – Mariscotti et al. (2014)
DM, 33.0 97 Kuhl et al. (2005)
MRI 91.0 97 Kuhl et al. (2005)
US 40 – Kuhl et al. (2005)
DM + US 49 – Kuhl et al. (2005)
DM 40.0 93 Leach et al. (2005)
MRI 77.0 81 Leach et al. (2005)
DM 50.0 – Hagen et al. (2007)
MRI 86.0 – Hagen et al. (2007)
DM 38.0 100 Warner et al. (2004)
MRI 85.0 93 Warner et al. (2004)
DM 36.0 89 Phi et al. (2017)
MRI 94.0 84 Phi et al. (2017)
DM 32.0 99 Phi et al. (2016)
MRI 75.0 96 Phi et al. (2016)
DM 38.0 96 Warner et al. (2008)
MRI 97.0 91 Warner et al. (2008)
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image analysis (Forsberg et al. 2017; Spampinato et al. 
2017).

Deep learning algorithms with deeper layers like Con-
volutional Neural Networks (DCNN) have recently shown 
success in different medical image analysis tasks like seg-
mentation, detection, and classification (Kooi et al. 2016) 
for urinary bladder (Cha et al. 2016), thoracic-abdominal 
lymph nodes, interstitial lung disease (Gao et al. 2016), and 
pulmonary perifissural nodules (Ciompi et al. 2015; Shin 
et al. 2016b). Angelov and Sperduti (2016) have made an 
impressive and concise review of the challenges in DL. They 
started with how multiple layers in a DL approach help in 
letting efficient learning of hidden representations in datasets 
and exponential gain in depictive power of each feature in 
the datasets (Angelov and Gu 2017). Besides its computa-
tional cost, they added that fine-tuning the hyper-parameters 
of the models and structural features selection is not yet real-
ized for DL techniques. But, the availability of pre-trained 
models has enabled the researchers to either extract features 
in different points of DL (Sargano et al. 2017) or use it for 
incremental training to adapt the models to other domain 
on which the models are trained on Angelov and Gu (2018). 
The summary of DL application types are given in Table 6. 
The acronyms of the databases used in papers that we con-
sidered in this survey paper are given in Table 5. 

Samala et al. (2016a), evaluated their proposed DCNN 
layer built of 12 hidden layers by comparing it with a CNN 
with 8 hidden layers in terms of AUC. The DCNN with 5 
kernel size and CNN with 3 kernel size were intended for the 
classification of true microcalcifications and false positives 

and achieved the AUC value of 0.93 for DCNN and 0.89 for 
CNN. The dataset used in this research work includes 64 
DBT cases collected at the University of Michigan.

Samala et al. (2016b) proposed feature-based and DCNN 
based CAD system. In DCNN, transfer learning is applied 
to train the first four convolutional layers and the last three 
fully connected layers of DCNN using only mammographic 
images for lesion recognition and false-positive reduction. 
The transfer learning scored a training AUC of 0.99 and vali-
dated using DBT image dataset and achieved an AUC value 
of 0.81. However, after training using only DM, additional 
training was held using DBT images to improve the valida-
tion score of the model and scored an AUC of 0.90. Data 

Table 4  Summary of most cited and recently updated (2016–2019) 
breast cancer datasets (N—normal, AB—abnormal, R—reposi-
tory, A—author, M—malignant, B—benign, CM—causal mutation, 

LNV—likely neutral variant, NV—neutral variant, UV—unknown/
unclassified variant, DC—ductal carcinoma, LC—lobular carcinoma, 
MC—mucinous carcinoma, and PC—papillary carcinoma)

Dataset Size R/A # of cite Classes Format Modality Citation

MIAS 322 K.Mader 304 N, AB pgm DM Mader (2017)
DDSM 55,890 Scuccimarra 15 N, AB jpeg DM Scuccimarra (2018)
Breast Cancer Wisconsin (Diag-

nostic)
569 UCI 375 M, B CSV DM Dataset (2018)

Breast Histopathology 277,524 P.Mooney 160 IDC(–), IDC(+) png DM Dataset (2017)
NKI Breast Cancer Data 272 D.Ramanan 30 – CSV Gene Ramanan (2018)
Breast Cancer Proteomes 64 Grabowski 80 – CSV Gene Grabowski (2016)
Incidence of breast cancer (all) – NHS Digital 24 – html – NHS Digital (2010)
Breast Cancer Wisconsin (Prog-

nostic)
– UCI 73 Recur, Non-recur – DM Sarah (2018)

UMD-BRCA1/ BRCA2 11793 BRCA Share 70 CM, LNV NV, UV – – Beroud et al. (2016)
CBIS-DDSM 10239 R.S.Lee – N, M, B DICOM DM Lee et al. (2016, 2017) and 

CBIS-DDSM (2019)
InBreast 410 Moreira 201 N, B, M XML DM Moreira et al. (2011)
Breast US Image 250 P.S.Rodrigues 507 B, M – US Rodrigues (2017)
Araujo 260 Ahmed – N, B, In-situ, Invasive – Histology Ahmad and Khurshid (2019)
BreaKHis 7909 – – B, DC, LC, MC, PC – Histology Sun and Binder (2017)

Table 5  Names of databases used in papers that we included in this 
survey paper and their acronyms

Name of database Acronyms

University of Michigan Health System UM
Samsung Medical Center SMC
Massachusetts General Hospital MGH
Digital Database for Screening Mammography DDSM
Mammography Image Analysis Society MIAS
Radiology Dept., The Netherland RDN
University of Chicago UC
Duke University School of Medicine DU
Zhejiang Cancer Hospital ZCH
Zuric University Hospital ZUH
UDIAT Diagnostic Center,Spain UDIAT
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used in their study was obtained using three imaging modali-
ties (SFM, DM and DBT) where 2282 images using digi-
tized SFM and DM, and 324 images was DBT. The source 
of the image dataset was the department of Radiology at the 
University of Michigan Health System and University of 
South Florida. Morphological and texture features were used 
as feature-based CAD system for detection of mass in the 
mammograms with the intention of false-positive reduction 
result. Finally, the feature-based and the DCNN-based CAD 
systems achieved a sensitivity of 83% and 91% , respectively, 
at 1 FP/DBT volume.

Kim et al. (2016) proposed a latent bilateral feature rep-
resentation learned from DCNN to classify masses and FPs 
through abstraction of data at multiple levels to get accurate 
representation of image dataset. This approach is applied for 
the latent bilateral feature representation of masses in DBT 
and compared with hand-crafted features. The AUC value 
for hand-crafted features was 0.826 and 0.847 for latent 
bilateral features.

Fotin et  al. (2016) proposed a comparative analysis 
between the conventional approach and DCNN using 3D 
(DBT) images to detect (ROIs) and classify the two breast 
cancer abnormalities (mass and architectural distortions). In 
the conventional approach, hand-crafted features (contrast, 
histogram, gradient, texture, shape and topology descriptors) 
are extracted from the ROIs and given to the ensemble of 
boosted decision trees. However, in DCNN approach instead 
of hand-crafted features, a resized 256 × 256 ROIs are given 
to DCNN to detect and classify the abnormalities. The sen-
sitivity of a conventional and DCNN approach was 83.2% 
and 89.3% , respectively for suspicious ROIs and 85.2% and 
93.0% , respectively for malignant ROIs.

Junzhang et  al. collected a weakly annotated image 
datasets for mass using expertise to use in the proposed 
approach, fully CNN based heatmap regression, for mass 
detection (Zhang et al. 2018). The weakly annotated mam-
mograms were given as input to the fully CNN model and 
the model generated the heatmap for the breast mass. The 
trained model then used for two different purposes: first for 
estimating the probability of map of mass locations for the 
439 mammograms and then 40 images of DBT were used to 
evaluate the performance of transfer learning by only fine-
tuning the last two layers of the pre-trained U-Net model 

which was trained using mammographic images. The evalu-
ation parameters used in this paper were precision and recall 
value. The precision and recall value of the approach using 
mammographic images were 0.85 and 0.92 and that of other 
approach using tomosynthesis images were 0.33 and 0.41, 
respectively.

Samala et al. (2018a) explained how too many param-
eters in the pre-trained models have become a major chal-
lenge in training deep learning. The pre-trained models like 
AlexNet, VGGNet16, GoogLeNet17 and ResNet18 use 60 
million, 138 million, 4 million and 60 million parameters, 
respectively (Krizhevsky et al. 2012; Simonyan and Zisser-
man 2014; Szegedy et al. 2015; He et al. 2016). The limited 
amount of medical images is also another challenge to train 
these models and the applied practice to overcome this chal-
lenge is training the models with non-medical images. In this 
study (Samala et al. 2018a), imageNet pre-trained deep CNN 
model is selected for a transfer learning. The images used in 
their experiment was 2, 282 ROIs out of 2461 mass lesions 
from mammographic image dataset and 230 ROIs from 228 
DBT mass lesions. Data augmentation is applied to these 
images resulting in a total of 19,688 mammographic images 
and 9120 DBT images. The authors added two additional FC 
layers to avoid divergence occurred by cross-domain trans-
fer learning. The first added FC layer contained 100 nodes 
and the second with two nodes. According to (Samala et al. 
2017), deactivating the first convolutional layer of the Ima-
geNet pre-trained model with non-medical images became 
best for transfer learning to mammographic images. Training 
DCNN using mammographic images has performed well 
when validated with DBT image data (Samala et al. 2017). 
In the final stage of this approach transfer learning using 
DBT was made by deactivating layers from the first convo-
lutional layer to third fully connected layer. These layers are 
used as a feature extractor to generate 1000 features, and 
then the recursive feature reduction method was applied to 
select 240 features. After feature reduction, genetic algo-
rithm and layered pathway evolution were used to compress 
the frozen deep CNN. The AUC based classification perfor-
mance of the method applied in this paper was 0.88 before 
compression and 0.90 after compression for deep CNN.

Samala et al. (2018b) proposed a two stages cross-domain 
transfer learning approach using DCNN (ImageNet) with 

Table 6  Deep learning 
application types in medical 
image analysis

Deep learning application types Sample author(s) and Citation(s)

Segmentation Rodriguez-Ruiz et al. (2018) and Kallenberg et al. (2016)
Feature Extraction Mendel et al. (2018) and Debelee et al. (2018)
Detection Samala et al. (2016b) and Zhang et al. (2018)
Classification Samala et al. (2018a) and Mendel et al. (2018)
Prediction Benjamin et al. (2017) and Mobadersany et al. (2018)
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five convolutional layers (C1-C5) trained with 1.2 million 
non-medical images. In their first stage, some convolutional 
layers of the DCNN were frozen and trained with 20K ROIs 
from mammographic images. In this stage, the convolutional 
layer was frozen in three ways: firstly, C1 was frozen, sec-
ondly C1 to C3 were frozen and lastly, C1 to C5 were frozen. 
In their second stage, mammographic trained DCNN was 
further trained using 9K ROIs from DBT in all the three 
cases considered in the first stage. Finally, the efficiency of 
the designed transfer learning approach was evaluated in 
terms of AUC and achieved an AUC value of 0.76 for C1, 
0.73 for C1–C3 and 0.73 for all frozen convolutional layers. 
The result indicates that deactivating only C1 gives a higher 
performance during transfer learning.

Semi-automated breast mass segmentation was proposed 
by Zhang et al. (2018) using DBT images. In most recent 
years, mass detection and segmentation using machine 
learning approach has gained remarkable result (Zhang 
et al. 2016, 2017; Lian et al. 2015, 2017; Zhu et al. 2016, 
2017; Liu et al. 2017). However, DCNN based methods have 
become even more robust and precise to detect and segment 
masses in the breast (Zhang et al. 2018). In their study, an 
auto encoder-decoder networks type of DL approach is used 
to do a mass segmentation in training and application stages. 
In the training stage, a breast mass mask was used to build 
an auto encoder-decoder model to realize the mass segmen-
tation. In the application stage, mass region annotated by 
radiologists were extracted from each DBT image and feed 
to a pre-trained model, with U-Net network architecture, to 
do pixel-based mass segmentation. The network used in this 
study has two parts: an encoding path with two convolution 
operations, two rectified linear unit and one max-pooling 
operation for feature extraction and a decoding path (one 
up-pooling operation, one feature map, and two convolution 
operations) for image expansion. In the experiment, n-fold 
cross-validation was applied to measure the efficiency of 
the proposed mass segmentation in terms of Dice similarity 
coefficient (DSC) and achieved a value of 0.59.

Yousefi et al. (2018) introduced a three different CAD 
framework, hand-crafted, feature-based MIL framework, 
DCNN Multiple Instance-Random Forest (DCNN MI-RF) 
and deep cardinality-restricted Boltzmann machine Multi-
ple Instance-Random Forest (DCaRBM MI-RF), for auto-
matic detection of speculated mass. The 5040 2D slices 
collected from 87 DBT volumes were preprocessed that 
include data augmentation, noise removal, and the pectoral 
muscle removal of slices. For DCNN and deep CaRBM, 
data augmentation was carried out before noise and pectoral 
muscle removal. The efficiency of all the three frameworks 
was measured based on sensitivity, AUC, specificity, and 
accuracy. In hand-crafted, four features (morphological, sta-
tistical, gray-level, texture) were extracted from ROIs and 
given to MI-RF classifier to classify the DBT slices. The 

performance of this framework in terms of specificity, sen-
sitivity, accuracy, and AUC were 75% , 66.6% , 69.2% , 0.75, 
respectively. In DCNN MI-RF based framework, DCNN was 
embedded into the framework to get the optimum high-level 
feature representation out of pre-processed 256 × 256 resized 
DBT slices. Then these features are given to MI-RF classi-
fier as input to classify the DBT slices. The performance of 
DCNN MI-RF framework in terms of AUC, accuracy, sen-
sitivity, and specificity were 0.87, 86.81% , 86.6% and 87.5% , 
respectively. The CaRBM based CAD framework was simi-
lar to the DCNN except that the DCNN is replaced by deep 
CaRBM for feature representation. Then, these features are 
given to MI-RF classifier as input to classify the DBT slices. 
Its performance in terms of AUC, accuracy, specificity, and 
sensitivity were 0.70, 78.5% , 66.6% and 81.8% , respectively.

Mendel et  al. (2018) designed a method of feature 
extraction using CNN from the ROIs obtained from DM, 
synthesized 2D images and DBT slices. These images are 
collected from 76 patients using DBT and DM. Expert 
radiologists identified the 78 lesions (ROIs) with dimen-
sions 512 × 512 pixels from these datasets where 48 of 
them were benign and the rest were malignant. Some of 
the lesions were visible in CC views and some in MLO 
views. These features were given to a pre-trained DCNN 
(VGGNet19) to extract the features (LeCun et al. 2015; 
Shin et al. 2016b). Feature extraction was followed by 
feature reduction through eliminating features with zero-
values f or 50% of the ROIs. Finally, the reduced features 
were given to linear SVM. The achievement of the SVM 
was measured in terms of AUC for three datasets. The 
AUC value of DM, synthesized mammographic images 
and DBT slice were 0.755, 0.814 and 0.743, respec-
tively for CC view. The AUC value of DM synthesized 
2D images and DBT slice were 0.757, 0.881 and 0.832, 
respectively for MLO view.

Rodriguez-Ruiz et al. (2018) adopted a DCNN archi-
tecture for three-class (pectoral, breast or open field) clas-
sification which was similar to the one used in Ronneberger 
et al. (2015). The U-Net model was evaluated based on the 
Dice similarity coefficient (DSC) in which the area overlap 
between segmentation and ground truth is compared. Data 
used in this paper was collected from 100 patients to gain 172 
DBT slices where 121 slices for training, 15 slices for valida-
tion and 36 slices for testing. The experimental result showed 
that the DSC value of the method became 0.970 for test data 
and found to be promising for the other modalities like mam-
mography and synthetic mammograms (Tables 7, 8).

Kooi et  al. (2017a) carried out a feature extraction 
approach using a DCNN to classify benign solitary cysts 
from malignant masses. In their work, they adopted both 
data augmentation with different image resolution but end up 
with no significant improvement in the performance. Their 
experiment achieved 0.80 AUC value.
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Jadoon et al. (2017) introduced CNN-DW and CNN-CT 
based multi-class classification techniques to classify the 
mammograms from IRMA datasets into normal, benign, and 
malignant. The fusion of the CNN features and most descrip-
tive features with wavelets performed well and achieved an 
accuracy of 83.74% for SVM classifier.

Gallego-Posado et al. (2016) applied DCNN for breast 
tumor detection and diagnosis. The authors preprocessed 
(cropping and resizing) the original mammograms from 
MIAS. Then, the data augmentation was applied by rotat-
ing the original images to enhance the size of image datasets. 

They extracted features using CNN pre-trained model and 
gave these features to SVM and scored an accuracy of 
64.52%.

Amit et al. (2017) introduced two DCNN techniques 
that classify breast images into benign and malignant. The 
annotated images were cropped using a square bounding box 
around the annotated boundaries and obtained 891 malig-
nant (BIRADS 5) and 365 benign (BI-RADS 2). These 
images were augmented using rotation (90◦ , 180◦ , 270◦ ) and 
flipping (right-left, down-up). In the first approach, the CNN 
with three convolutional layers was trained with the labeled 

Table 7  Deep learning applications with DBT, DM, MRI, and US imaging modalities and databases

Author(s) and citation Abnormality type (s) Application (s) Target/classes Dataset Modality

Samala et al. (2016a) Microcalcification Classification – UM DBT
Samala et al. (2016b) Mass Detection ROIs UM DBT
Kim et al. (2016) Mass Classification – SMC DBT
Fotin et al. (2016) Mass and arch. distortion Detection and classification – – DBT
Zhang et al. (2018) Mass Detection – DDSM DBT
Samala et al. (2018a) Mass Classification B, M – DBT
Samala et al. (2018b) Mass Classification B, M UM DBT
Zhang et al. (2018) Mass Segmentation RoIs DDSM DBT
Yousefi et al. (2018) Mass Detection and classification M, B MGH DBT
Mendel et al. (2018) Mass Classification B, M – DBT
Rodriguez-Ruiz et al. (2018) Pectoral muscle Segmentation ROI RDN DBT
Kooi et al. (2017a) Mass Extraction B, M RDN DM
Debelee et al. (2018) Mass calcification and 

arch. distortion
Extraction N, AB DDSM MIAS DM

Kooi et al. (2017b) – Classification M, N RDN DM
Zhang et al. (2018) Mass Detection – DDSM DM
Samala et al. (2018a) Mass Classification M, B UM DM
Kallenberg et al. (2016) Mass Segmentation N, AB – DM
Jadoon et al. (2017) Mass Extraction B, M IRMA DM
Gallego-Posado et al. (2016) Mass Extraction B, M – DM
Samala et al. (2016a) Microcalcification Classification – UM MRI
Samala et al. (2016b) Mass Detection – UM MRI
Amit et al. (2017) Mass Classification and extraction B, M – MRI
Antropova et al. (2017a) Mass Extraction B, M UC MRI
Antropova et al. (2017b) Mass Extraction B, M UC MRI
Antropova and Giger (2018) Mass Extraction B, M UC MRI
Antropova et al. (2018) Mass Extraction B, M UC MRI
Zhu et al. (2018) – Extraction In-situ, invasive DU MRI
Zhang et al. (2018) Mass Segmentation and classification – – MRI
Li et al. (2017) Mass Classification B, M ZCH MRI
Benjamin et al. (2017) – Prediction – – MRI
Antropova et al. (2017b) Mass Extraction B, M UC US
Becker et al. (2018) – Classification B, M ZUH US
Han et al. (2017) Mass Classification B, M SMC US
Shin et al. (2017) Mass Detection and classification B, M – US
Yap et al. (2018a) Mass Detection B, M UDIAT US
Yap et al. (2018) Mass Detection and segmentation B, M UDIAT US
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Table 8  Performance comparison of selected studies using DBT, DM, MRI, and US databases in terms of size of images, AUC, accuracy (Acc), 
specificity (Spec) and sensitivity (Sen) and modality

Author(s) and citation Classifier (feat.) Size AUC Acc ( %) Spec ( %) Sen ( %) Dataset Modality

Samala et al. (2016a) DCNN 64 0.93 – – – UM DBT
Samala et al. (2016a) CNN 64 0.89 – – – UM DBT
Samala et al. (2016b) DCNN 324 0.80 – – 80 UM DBT
Kim et al. (2016) SVM 160 0.847 – – – SMC DBT
Fotin et al. (2016) DCNN 344 – 86.40 – 89 – DBT
Zhang et al. (2018) DCNN 40 – – – 0.41 DDSM DBT
Samala et al. (2018a) DCNN 228 0.90 – – – – DBT
Samala et al. (2018b) DCNN 324 0.76 – – – UM DBT
Yousefi et al. (2018) DCNN MI-RF 87 0.87 86.81 87.5 86.6 MGH DBT
Yousefi et al. (2018) DCaRBM MI-RF 87 0.70 78.5 66.6 81.8 MGH DBT
Yousefi et al. (2018) MI-RF 87 0.75 69.2 75 66.6 MGH DBT
Reiser et al. (2006) LDA 36 – – – 90 – DBT
van Schie et al. (2013) Neural network 752 – – – 80 – DBT
Chan et al. (2008) LDA 100 – – – 80 – DBT
Palma et al. (2014) SVM 101 – – – 90 – DBT
Mendel et al. (2018) SVM 76 0.832 – – – – DBT
Antropova et al. (2017b) SVM (handcrafted) 245 0.79 – – – UC DBT
Antropova et al. (2017b) SVM (CNN) 245 0.81 – – – UC DBT
Antropova et al. (2017b) SVM (fused) 245 0.86 – – – UC DBT
Debelee et al. (2018) KNN (DDSM) 320 – 98.90 – – DDSM DM
Debelee et al. (2018) KNN (MIAS) 320 – 98.75 – – MIAS DM
Kooi et al. (2017a) – – 0.80 – – – RDN DM
Kooi et al. (2017b) CNN + augmentation 45,000 0.929 – – – RDN DM
Kooi et al. (2017b) CNN + augmentation + manual features 45,000 0.941 – – – RDN DM
Kooi et al. (2017b) CNN − augmentation 45,000 0.875 – – – RDN DM
Kallenberg et al. (2016) Convolutional (sparse) autoencoders 

(CSAE)
– 0.61 – – – – DM

Jadoon et al. (2017) SVM – – 83.74 – – IRMA DM
Gallego-Posado et al. (2016) SVM – – 64.52 – – – DM
Amit et al. (2017) CNN 4863 0.91 83 82 84 – MRI
Amit et al. (2017) SVM 4863 0.81 73 68 77 – MRI
Antropova et al. (2017a) LDA (CNN) 640 0.76 – – – UC MRI
Antropova et al. (2017a) LDA (non-CNN) 640 0.88 – – – UC MRI
Antropova et al. (2017a) LDA (fused) 640 0.91 – – – UC MRI
Antropova et al. (2017b) SVM (handcrafted) 690 0.86 – – – UC MRI
Antropova et al. (2017b) SVM (CNN) 690 0.87 – – – UC MRI
Antropova et al. (2017b) SVM (fused) 690 0.89 – – – UC MRI
Antropova and Giger (2018) SVM 690 0.80 – – – UC MRI
Antropova and Giger (2018) SVM 690 0.83 – – – UC MRI
Antropova and Giger (2018) SVM (MIP) 690 0.88 – – – UC MRI
Antropova et al. (2018) SVM 703 0.81 – – – UC MRI
Antropova et al. (2018) LSTM 703 0.85 – – – UC MRI
Zhu et al. (2018) SVM: poly 131 0.68 – – – DU MRI
Zhu et al. (2018) SVM: linear 131 0.64 – – – DU MRI
Zhu et al. (2018) SVM: RBF 131 0.54 – – – DU MRI
Zhang et al. (2018) FCN (manual ROIs) 272 0.6418 – – 75.04 – MRI
Zhang et al. (2018) FCN (FCN-ROIs) 272 0.6398 – – – – MRI
Li et al. (2017) 2D CNN 143 0.752 71.1 67.4 76.1 ZCH MRI
Li et al. (2017) 3D CNN 143 0.841 80.4 77.3 81.4 ZCH MRI
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datasets. And in the second approach, the same labeled data-
sets were used as input to pre-trained VGGNet to extract the 
features from fully connected layer to do classification using 
SVM. The first approach’s accuracy, sensitivity, specificity, 
and AUC were 83% , 84% , 82% and 0.91, respectively. And 
the second approach’s accuracy, sensitivity, specificity, and 
AUC were 73% , 77% , 68% and 0.81, respectively.

Antropova et al. (2017a) proposed two different ways to 
extract features with the aim of classifying the images into 
benign and malignant where the first is segmentation-based 
and the second is CNN based. The study was based on 640 
images collected using DCE-MRIs imaging modality. Out 
of 640 images, 191 were benign and 449 were malignant. 
In a segmentation-based approach, 38 features of 6 differ-
ent categories (enhancement texture, size, kinetics vari-
ance, morphology, shape, and kinetics) were extracted after 
segmentation for classification purpose. In a CNN-based 
approach, the extracted 148 × 148-pixel sized ROIs were 
given as input to the AlexNet pre-trained model and 4096 
feature vectors were extracted from FC layers. However, 
only 518 features were used for analysis after leaving 80% of 
the feature vectors with zero value. The performance of this 
study was evaluated using LDA classifier with round-robin 
cross-validation for three cases (segmentation-based features 
(38), CNN-based features (518) and fused features (556)). 
The performance results in terms of AUC for segmentation-
based, CNN features and combined features were 0.88, 0.76 
and 0.91, respectively.

Antropova et al. (2017b) collected three datasets using 
three imaging modalities (mammography, ultrasound, and 
DCE-MRI). The number of patients considered in mam-
mographic imaging modalities was 245, 1125 patients for 
ultrasound and 690 for DCE-MRI. However, the number of 
ROIs for mammographic imaging modality was 739 (328 
benign, 411 malignant), 2393 (1978 benign, 415 malignant) 
for an ultrasound and 690 (212 benign, 478 malignant) for 

DCE-MRI. For all datasets, CNN-based features from FC 
and Max-pool layers of VGGNet (VGG19) and conventional 
features (handcrafted features) were collected. However, 
the performance of max-pool features outperformed the FC 
features according to the comparison made based on AUC 
and hence the performance of the conventional features was 
made only with max-pool features. The two features (Con-
ventional features and CNN features) were fed to a non-
linear SVM with Gaussian RBF kernel and achieved an AUC 
value of 0.79 and 0.81 for mammographic images, 0.84 and 
0.87 for ultrasound images and 0.86 and 0.87 for DCE-MRI, 
respectively. The performance of SVM was also evaluated 
for the combined or fused features (Conventional features + 
CNN features) and achieved an AUC value of 0.86, 0.90 and 
0.89 for mammography, ultrasound, and DCE-MRI datasets, 
respectively.

Antropova and Giger (2018) extracted CNN-based fea-
tures from all five max-pooling layers using DCE-MRI 
images from 690 cases. Based on a report from pathologists 
and radiologists, out of 690 cases, 212 cases were benign 
and 478 cases were malignant. The extracted features were 
first normalized with Euclidean norm before concatenated to 
form fused CNN feature vectors. Then, these features were 
given to linear SVM to classify MRI images as malignant 
and benign. The discriminating power of the features from 
the three ROIs was evaluated using AUC with 80% of the 
features for training and 20% for testing. The AUC value of 
the central slice of the second postcontrast, a central slice of 
the second postcontrast subtracted and MIP were 0.80, 0.83 
and 0.88, respectively.

Antropova et al. (2018) extracted features from all five 
max-pool layers using VGGNet with 19 layers to classify as 
benign and malignant. Out of the 703 images datasets col-
lected using DCE-MRI imaging modality 221 were benign 
and 482 were malignant. They separately extracted the fea-
tures from images before and after contrast enhancement and 

Table 8  (continued)

Author(s) and citation Classifier (feat.) Size AUC Acc ( %) Spec ( %) Sen ( %) Dataset Modality

Benjamin et al. (2017) DCNN 64 0.85 – – – – MRI
Antropova et al. (2017b) SVM (handcrafted) 1125 0.84 – – – UC US
Antropova et al. (2017b) SVM (CNN) 1125 0.87 – – – UC US
Antropova et al. (2017b) SVM (fused) 1125 0.90 – – – UC US
Becker et al. (2018) DL 632 0.84 – – – ZUH US
Becker et al. (2018) Experts (experi. (and intermedi.) 632 0.88 – – – ZUH US
Becker et al. (2018) Experts (inexperienced) 632 0.79 – – – ZUH US
Han et al. (2017) DCNN 5151 0.90 90 96 86 – US
Shin et al. (2017) CNN 5424 – – – – UDIAT US
Yap et al. (2018a) CNN (LeNet) 469 (A + B) – – – – UDIAT US
Yap et al. (2018) CNN (B detection) 469 (A + B) – – – 68.79 UDIAT US
Yap et al. (2018) CNN (M detection) 469 (A + B) – – – 54.84 UDIAT US
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fed to LSTM and SVM with RBF kernel. The parameters of 
the LSTM and SVM classifiers were tuned on a grid search 
with cross-validation (5 fold). The efficiency of the classi-
fiers and distinguishing power of the features were measured 
based on the AUC analysis. AUC for SVM classifier was 
0.81 and 0.85 for LSTM classifier.

Zhu et al. (2018) used VGGNet with 16 layers to extract 
features (deep features, Conv11, Conv12, Conv13, FC1, 
and FC2 features) from MRI images. Images were collected 
from a total of 131 patients where 35 of them were invasive 
and the rest were DCIS diagnosed patients. After generat-
ing ROIs from the original images, data augmentation was 
applied using random translation and rotation. The SVM 
with kernel functions of different types (polynomial, linear 
and RBF) was trained and evaluated in terms of AUC and 
validated using cross-validation (10 fold). Compared to other 
features, the best AUC value (0.68) was achieved with deep 
features from convolutional layer 13.

Zhang et al. (2018) proposed a CNN based segmenta-
tion technique in two stages for images collected from 272 
patients using DCE-MRI imaging modality. In the first stage, 
rough segmentation of breast tumor is obtained and followed 
by refining as the second stage of FCN. The efficiency of 
segmentation was evaluated using three measurements (Dice 
similarity coefficient, sensitivity, and PPV) and comparing 
with manually annotated ground-truth. The DSC, sensi-
tivity and PPV values were 0.7176, 75.04% and 77.33% , 
respectively.

Li et al. (2017) proposed a 2D CNN and 3D CNN clas-
sification of 143 breast images as benign and malignant. 
There were 77 malignant and 66 benign for classification 
and AUC, accuracy, sensitivity and specificity as evalua-
tion parameters. The value of AUC, sensitivity, specificity, 
and accuracy on test data without augmentation were 0.841, 
81.4% , 77.3% and 80.4% , respectively for 3D CNN and 
0.752, 76.1% , 67.4% and 71.1% , respectively for 2D CNN.

Benjamin et al. (2017) applied cropping to extract 561 
ROIs with 111 × 111 pixel size from 64 images. VGGNet 
was used to extract features from the five convolutional lay-
ers to enrich spatial information both in lower-level features 
and higher-level features. All the five convolutional layers 
from 1 to 5 presented 64, 128, 256, 512, and 512 features, 
respectively and fused features became 1472 features. Stand-
ardization technique was applied to all features to achieve 
a mean of zero value and a variance of 1. Following the 
removal of features with zero variance, the prediction power 
of LDA classifier for a retort to therapy was measured in 
terms of AUC and scored 0.85 as AUC value.

Becker et al. (2018) targeted 632 patients that undertak-
ing breast ultrasound in 2014 for their study. Out of 632 
patients, 550 patients were found to have malignant and the 
remaining 82 have benign lesions. The authors proposed a 
generic DL approach to compare with the performance of 

human readers (radiologists, residents, medical students) 
with different expertise (experienced and intermediate read-
ers, inexperienced readers) to classify the ultrasound images 
into benign or malignant. Hold-out validation technique was 
used where 70% of the dataset used for training and 30% 
for testing. The performance analysis was made using AUC 
and DL method scored 0.84, experienced and intermediate 
readers scored 0.88 and inexperienced readers scored 0.79.

Han et al. (2017) have carried out an experiment by modi-
fying the architecture of GoogleNet. The modifications tar-
geted on removing two auxiliary classifiers and shifting the 
input layer to deal with grayscale images instead of color 
images. The modifications include the reduction of output 
classes of the target architecture from 100 to 2 classes. For 
their work, the authors collected 7408 biopsy-confirmed 
ultrasound breast images (ROIs) associated with masses. 
Semi-automatically segmentation technique was used to 
collect ROIs from 5151 patients lesions. Their dataset cov-
ered 4254 benign and 3154 malignant lesions. In their pre-
processing, histogram equalization, image cropping and 
margin augmentation were considered. Image cropping was 
done using a margin with 180 pixels. Data augmentation was 
achieved using cropping with two different margins (120 
pixels and 150 pixels) and translation to increase the num-
ber of the training dataset. Out of 7408 ROIs, 6579 ROIs 
[benign (3765) and malignant (2814)] were used for training 
and 829 were for testing.

Shin et al. (2017), proposed a CNN based framework 
to localize and classify masses in breast ultrasound (BUS) 
images. The CNN (VGGNet-16 and RESNET-101) was 
trained using large and weakly annotated (DX) dataset and 
small but strongly annotated (DX + Loc, 600 benign and 
600 malignant) dataset. The evaluation is conducted on DX 
+ Loc-Test using correct localization (CorLoc) measure; it is 
the percentage of images in which a method correctly local-
izes an object of the target class. Better results were obtained 
when both the weakly annotated and strongly annotated 
datasets were used to train the network. DX image dataset 
used image-level loss whereas DX + Loc image datasets 
used region-level losses. VGGNet-16 scored a CorLoc value 
of 0.8450 and RESNET-101 scored 0.8325.

Yap et al. (2018a) proposed three different DL approaches 
named Patch-based LeNet, U-Net and transfer learning using 
a fully connected network, AlexNet, for breast ultrasound 
lesion detection. The authors used two different datasets 
named dataset A [malignant (60), benign(246)) and B 
(malignant (53), benign(110)] and the overall best perfor-
mance was achieved when the two datasets were combined 
using LeNet.

Yap et al. (2018) proposed an end-to-end breast ultra-
sound lesions detection using a fully connected network 
version of AlexNet (FCN-AlexNet). The dataset used in 
Yap et al. (2018) was identical to the one used in Yap et al. 



157Evolving Systems (2020) 11:143–163 

1 3

(2018a) and the proposed approach was found to be good 
for benign lesions detection compared to malignant lesions 
based on the performance assessment made using hold-out 
techniques (70% for training, 10% for validation and 20% for 
testing).

5.2  Histopathology and deep learning based breast 
cancer image analysis

Histopathology is a technique applied for cancer diagnosis 
and prognostication for many decades where Pathologists 
analyze tissue cells under different microscopic standards 
(Ahmad and Khurshid 2019; Mobadersany et al. 2018). 
However, the pathologists’ chance to come to one final deci-
sion is rare since the assessment is subjective and hence 
frequent use of this method become tiresome and not repeat-
able (Ahmad and Khurshid 2019; Mobadersany et al. 2018). 
In addition, issues related to slide preparation, variations in 
scanning across sites and staining, and biological variance 
(Janowczyk and Madabhushi 2016) among patients made 
the histopathological based breast cancer analysis very 
challenging.

Ahmed and Khurshid have applied the histopathological 
method for breast cancer image analysis using deep convolu-
tional neural networks as a supervised classification method 
cite Ahmad2019. They adopted three deep convolutional 
neural network architectures (AlexNet, GoogleNet, and 
ResNet) in their study to classify the 260 images into four 
classes (normal, benign, in-situ and invasive). The original 
image dataset distribution for the four classes were 51 for 
normal, 74 for benign, 68 for In-situ and 67 for Invasive. The 
classification was made patch-wise and image-wise, but the 

performance of image-wise classification better than patch-
wise for all three CNN models.

Xie et al. (2019) have adopted two deep convolutional 
neural network models (Inception-V3 and Inception ResNet-
V2) to classify the BreaKHis histology image dataset into 
binary classes (Benign and Malignant) and multi-classes. 
The multi-class is imposed as a result of malignant subtypes 
that include ductal carcinoma (DC), lobular carcinoma (LC), 
mucinous carcinoma (MC), and papillary carcinoma (PC). In 
their experimental analysis, they found that histopathologi-
cal based image classification using the two selected DCNN 
models were superior compared to the existing methods. 
And they proved that Inception-ResNet-V2 is the most per-
forming DCNN architecture for diagnosing breast cancer 
using histopathological images.

Sun and Binder (2017) has applied three deep convolu-
tional neural network architectures (CaffeNet, GoogleNet, 
and ResNet-50). In their study, they used breast cancer biop-
sies from BreaKHis dataset with resolutions of 40× , 100× , 
200× , 400× . The whole networks of CaffeNet, GoogleNet 
and ResNet-50 were fine-tuned with different crop sizes of 
histopathology images from the target dataset with speci-
fied resolutions and their performance was evaluated using 
accuracy. The best result was achieved at 200X resolution. 
The accuracy of CaffeNet, GoogleNet and ResNet-50 were 
89.40% , 89.86% and 89.60% , respectively.

Jiang et al. (2019) have ushered in a novel DCNN com-
posed of a convolutional layer, small SE-ResNet module, 
and fully connected layer to classify the histopathology 
images from BreaKHis dataset into binary classes (benign 
and malignant) and multi-classes. The multi-classes include 
other malignant subtypes like ductal carcinoma (DC), 

Table 9  Histopathology and deep learning based breast cancer image analysis

Author (s) and citation DCNN Model Database Size Acc ( %) F-score AUC 

Ahmad and Khurshid (2019) AlexNet Araujo 260 82.3 - -
GoogleNet Araujo 260 83.6 - -
ResNet Araujo 260 85.0 - -

Janowczyk and Madabhushi (2016) AlexNet - - 84.68 76.48 -
Jiang et al. (2019) SE-ResNet (binary classes) BreaKHis 7909 [98.87, 99.34] - -

SE-ResNet (multi-classes) BreaKHis 7909 [90.66, 93.81] - -
Sun and Binder (2017) CaffeNet ( 200×) BreaKHis 7909 89.40 - -

GoogleNet ( 200×) BreaKHis 7909 89.86 - -
ResNet-50 ( 200×) BreaKHis 7909 89.60 - -

Xie et al. (2019) (binary blass) Inception-V3 BreaKHis 7909 97.74 97.70 0.9947
Inception-ResNet-V2 BreaKHis 7909 98.03 98.47 0.9957

Xie et al. (2019) (multi-class) Inception-V3 BreaKHis 7909 90.44 90.28 -
Inception-ResNet-V2 BreaKHis 7909 89.11 92.07 -

Rakhlin et al. (2018) VGGNetNet Araujo 400 83.6 - -
ResNet Araujo 400 84.2 - -
Inception Araujo 400 83.0 - -
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lobular carcinoma (LC), mucinous carcinoma (MC), and 
papillary carcinoma (PC). In their architecture, they intro-
duced a new module which is the combination of residual 
module and squeeze-and-excitation block. They top up a 
new learning rate scheduler to avoid the complicated fine-
tuning process to achieve better performance (Table 9).

In our final stage of this survey paper, we selected papers 
with a publication year from 2016 to 2019 as indicated in 
Fig. 1 to show (a) the number of papers that use the particu-
lar database/dataset considered in this survey paper, (b) the 
distribution of papers that addresses the application types of 
DL in breast cancer image analysis, and (c) the frequency of 
breast cancer abnormality type that most diagnosed.

6  Conclusion

Medical image analysis using DL has proven to be better 
for scientific researchers compared to conventional machine 
learning approach. A recently remarkable change has been 
made on deep learning for medical images analysis has 

enabled it to discover feature patterns in raw images except 
continued demanding of huge image datasets. Some of the 
application types that are commonly used in today’s DL 
based research work are feature extraction, classification, 
detection, and segmentation. In this survey paper, all these 
DL application types are considered for review. Since DL 
methods have succeeded in state-of-the-art achievement 
over different medical applications like breast image analy-
sis, brain image analysis, retinal image analysis, abdominal 
image analysis, and musculoskeletal image analysis, using 
it for further improvement is the major step in analyzing 
medical images. However, there are some gaps that need 
to be addressed in medical image analysis using DL. First, 
building big datasets using medical images and making it 
available for researchers so that there will be different avail-
able pre-trained models trained on medical images, which in 
turn eases image requirement for transfer learning. Second, 
developing a new algorithm in which lesser image datasets 
are required to train deep models to specific domains in 
medical applications.

Fig. 1  Distribution of papers for publication. a Shows the number of 
papers that used a particular database from the year 2016–2019 and 
b shows the number papers that considered a particular breast abnor-

mality type from the year 2016–2018 c shows the number of papers 
that we considered for a particular DCNN application type from the 
year 2016–2018
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